l‘.’ Natonal Defense
Defence natonate

A SIMULATION SYSTEM

E% BASED ON THE ACTOR PARADIGM
% »

S\J‘I: J. McAffer

)

<

DTIC

s ELECTE §
- JUN2T 1389 §
N W

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 89-4

Bms besa approvey |
ol polls abmee February 1988
Canadi ;_ reynrivniueialy ' Ottawa

>

l* Natonal Détense
Defence nationale

A SIMULATION SYSTEM
BASED ON THE ACTOR PARADIGM

by

J. McAffer
Radar ESM Section
Electronic Warfare Division

Aosession rhr

NTIS GRAXI g
— PTIC TAB
2r1e Unaaneunced O
PV Justifieation
INSPACTID
6
Py
Distributien/

Availability Codes
Avail and/or
Pist Special

gl |

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 89-4

PCN
041LB14

February 1988
Ottawa

ABSTRACT

The main goal of this work is to produce a sophisticated object-oriented
design tool for simulating real-time applications. The basis of this tool is
Actor-based simulation, a powerful mechanism for modelling real world objects
simply, quickly and intuitively. It combines features of event-based and
clock-based simulation and allows designers to use both in a common
framework. Actors can be used to represent everything from the most basic to
the most complex components. Complex objects are constructed by modelling
their subcomponents and interactions. The Actor paradigm provides a good
model of concurrency and facilitates the development of comprehensive
monitoring and debugging tools. '

RESUME

L'objectif de ce travail est la production d'un outil de conception
complexe basé sur une structure d'objets pour simuler des applications
survenant en temps-réel. Le principe de cet outil est la simulation
d'Acteurs, un puissant mécanisme pour modeler des objets réels simplement,
rapidement et intuitivement. Cette simulation combine les particularités de
la simulation d'événements et de la simulation de temps et permet au modeleur
d'incorporer les deux dans un méme cadre. Les Acteurs peuvent tout
représenter, du composant le plus simple au plus compliqué. Les objets
compliqués sont batis en modelant leurs sour-composants et leurs
interactions. Le paradigme de l'Acteur offre un bon modéle de simultanéité et
facilite le developpement d'outils de contrdle et de dépistage d'erreurs.

iii

EXECUTIVE SUMMARY

DREQO is developing sophisticated object-oriented software tools for
designing, simulating and developing real-time applications. Designers need
software tools which allow them to prototype and test models of complex real
world objects. Since implementing a prototype that runs in real-time is often
difficult and expensive, prototypes are implemented in simulated real-time.
Simulation gives the prototype designer control over the time dimension of the
system and allows him to test the system in a controlled environment. The
effects of introducing new algorithms or features are determined quickly and
easily, making simulation both cost and time effective.

Typical simulation systems are difficult and very time consuming to
use. Validation of simulation strategies is also difficult because the
modelling code is large, unreadable and littered with special simulation
related commands. Modelling of concurrent systems is even more difficult to
implement and validate. We have developed a simulation system which is based
on object-oriented programming (OOP) principles and results in understandable
simulations. Much less programming time is required as simulation designers
can model systems in a more inituitive fashion. Because the resultant
simulations are simpler and easier to understand, they are easicr to
validate. The Actor concept is used to describe the concurrent components in
the simulation. Actors provide communication and coordination facilities
which are transparent to the simulation designer. These features combine to
create a simulation system which allows designers to concentrate on modelling
real world objects rather than on programming.

The concept of time within a simulation can be implemented in a number
of different ways including: TimeWarp, TimeLock and Clock Hierarchies. These
mechanisms have been considered and the Clock Hierarchies has been chosen for
use in the implementation of an Actor-based simulation system. A description
of the implementation of this system is presented including the message
passing coordination mechanism. The implementation was tested by creating an
emulation of the Harmony real-timing operating system.

As a result of this work it has been found that Actor-based simulation
is a very real possibility and thus a very useful tool in the design and
development of future real-time systems. This will result in time and cost
savings and will result in higher quality systems.

TABLE OF CONTENTS
PAGE
ABSTRACT/RESUME. . . & & & ¢ 4 & o o o+ o o o o o « o o o o o o o o o o iii
EXECUTIVE SUMMARY. . . ¢ ¢ & o & « o o o o o o o o s o s a o o o s o o @ v
TABLE OF CONTENTS. . & ¢ & ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o s o o s o o o o s vii
LIST OF FIGURES. . . « & ¢ ¢ ¢ ¢ ¢ o 4 o 4 o ¢ o o s o o « s « s o s o o ix

1.0 INTRODUCTION . & ¢ & ¢ ¢ ¢ @ ¢ o o o o o o o o s « o o s o o o o 1

s

2.0 ACTORS . v ¢ ¢ « ¢ ¢ 4 o o o o o o s o o s o o o o s o o o o o o

2.1 Example ACtOrs . . « « ¢ « ¢ ¢ « o o o o o« &

2.2 Actor Communication. . « « « o« « o ¢ o o ¢ ¢ o o s« 4 e 4 4

2.3 Software Development Features of Actors.

2.4 Implementation of Actors in Smalltalk.

2.4.1 Classes Required for Actors ¢ ¢« « ¢ ¢ ¢« & ¢ ¢ o o« &
2..1.1 ActOr. . « 4 o ¢ v 4 4 ¢« o 4 e o 4 s a4 e 4 4 s e
2.4,1.2 ActorMessage « . « ¢ « o« o s+ o o ¢ o o s e o o
2.4.1.3 Encapsulator « « « ¢ ¢« ¢ ¢ « s s 4 ¢ o o .

4.2 How Actors Pass MeSSAES. « « o « o o « o 2 o o s o o o o o

2.4.3 Monitoring. .« « ¢ « o ¢ ¢ ¢ o e 4 4 e e 6 e o e o o s e 4

HF OO OUL UL PN

—

—
=

300 ACTOR_BASED SIMUI.‘.ATION 3 . .

Time, Events and ACtOrS. . « « « + o & o ¢ o o o o o o o o & o o = 12
The Clock hierarchy. . . ¢ « o ¢ ¢ o o ¢ ¢ o ¢ o o s o o o 2 o « » 14
Implementation . . . & o o & 4 ¢ o o o o ¢ s s o 4 4o s e 6 s s 0 a 14
3.3.1 Required ClassesS. . . .« « ¢ ¢« ¢ ¢ ¢ o o o o o o o o o o o 14
3.3.1.1 SimulationActor. « .« « « « & ¢ o o o o o & o o o 14

Clock: & &« ¢ o ¢ o o o« o o o o o o s o o s o s o« 15
SimulationObject . . . + ¢ ¢ ¢ ¢ ¢« ¢ ¢« ¢ 4 o o 4 W 15
SimulationSystem ¢« ¢« . 4 ¢ ¢ 4t 4 4 e .o 15
SimulationMessage. . « « « &+ « o o 4 o « 2 e 4 15
ionMONitor .« ¢ « ¢ ¢ e 4 e 4 s e 4 4 s e s s e e 4 16

W w w
.
w N -

wwww

3.1.
.3.1.
3.1.
.3.1.

3.3.2 Simu

e et et ek et
(o VRN R U L)

a
4,0 HARMONY SIMULATION/EMULATION . . ¢ &« & ¢ ¢ o o o o« o o s o o o o 16

4.1 An Implementation of Harmony Emulation ¢« . « . . . 17
1.1 HarmonyTasKk . « « ¢ o o ¢ o o o o o o o o o o o o o o o o« 17
1.2 HarmonyDirectory. . « o o ¢ o o o o o o o o s s o o o o o« 17
1.3 HarmonyProCesSSOr. . « « « o s o o o s ¢ o o« « o o o o o o = 17
1.4 HarmonySystem . . . « ¢ o « o o o o o s o o o ¢ s o s o o o 17
€SULES. &« ¢ ¢ 4 4 e e 4 e e 4 s e e e s e s e e e e e e e e e e 17

4
4
4,
4,
4.2 R
5.0 CONCLUSIONS. « & ¢ « o o o o o o o ¢ o s o o o o o s o« s o o o o a 18
6.0 REFERENCES . . . ¢ &« ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o s o o s o o 19

7.0 ACKNOWLEDGEMENTS . . . ¢ « ¢ o ¢ o ¢ o o o o o o o o s o s o s o o 19

vii

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

2.1:

2.3:
2.4

2.5:

3.1:

3.2:

LIST OF FIGURES

PAGE

TIME LINE OF INTERPROCESS COMMUNICATIONS IN HARMONY 4

OBJECT POINTERS BEFORE AND AFTER A TWO WAY become:

OPERATION . &+ & v ¢ ¢ o o o« o o o o o o o o o o o o o o« « & 7
SIMPLE MESSAGE MONITORING TECHNIQUE « . . 8
MONITORING ESSAGE TRAFFIC USING doesNotUnderstand:. 9

PSEUDO-CODE FOR AN ACTOR ENCAPSULATOR'S
doesNotUnderstand: METHOD. . . ¢« ¢« ¢ ¢ ¢« ¢ o« « « « « « « » 10

SIMPLE MODEL OF A REAL WORLD OBJECT . . « . « « & ¢ « « o« . 12

COMPLEX MODEL OF A REAL WORLD OBJECT. . . . « . « « « . . . 12

ix

T

1.0 INTRODUCTION

DREO is developing sophisticated object-oriented software tools for
designing, simulating and developing real-time applications. Designers need
software tools which allow them to prototype and test models of complex real
world objects. Since implementing a prototype that runs in real-time is often
difficult and expensive, prototypes are implemented in simulated real-time.
Simulation gives the prototype designer control over the time dimension of the
system and allows him to test the system in a controlled environment. The
effects of introducing new algorithms or features are determined quickly and
easily, making simulation both cost and time effective.

Typical simulation systems are difficult and very time consuming to
use. Validation of simulation strategies is also difficult because the
modelling code is large, unreadable and littered with special simulation
related commands. Modelling of concurrent systems is even more difficult to
implement and validate. We have developed a simulation system which is based
on object-oriented programming (OOP) principles and results in understandable
simulations. Much less programming time is required as simulation designers
can model systems in a more intuitive fashion. Because the resultant
simulations are simpler and easier to understand, they are easier to
validate. The Actor concept (Ref. [6]) is used to describe the concurrent
components in the simulation. Actors provide communication and coordination
facilities which are transparent to the simulation designer. These features
combine to create a simulation system which allows designers to concentrate on
modelling real world objects rather than on programming.

In this report we detail how an object-oriented programming (OOP)
environment is extended to support the Actor concept and how this concept is
used to create a sophisticated simulation environment. Section 2 describes a
novel approach to the implementation of Actors as an extension of Smalltalk as
well as some of the benefits of using Actors and an QOP environment. Section
3 introduces the idea of Actor-based simulation, a very powerful and
straightforward concept upon which simulations of simple and complex real-time
applications can be based. One such simulation system is discussed and its
implementation described. A further section gives an example of Actors and
Actor-based simulation in the form of an emulation of Harmony (Ref. [4]), a
real-time operating system, running on a multiprocessor system.

2,0 ACTORS

A real-time system simulation environment must provide an acceptable
model of concurrency. The Actor concept is one such model. Originally Actors
were presented as conglomerates of objects which were independent and
functioned asynchronously with respect to the other conglomerates in the
system. It is difficult to provide a more specific definition which would be
widely accepted since particular implementations have tended to deviate
substantially from the original concept. Saying that Actors are active
objects summarizes our definition. Actors are encapsulations of data,
operations on this data, communications capabilities to allow these operations
to be used and the computing power required to drive all of the above. In
other words, an Actor behaves like a Smalltalk object which has a process and
communication mechanism attached to it.

Actors provide a clean package with which simulation designers can model
concurrency as well as functionality. The simplicity and functionality of
Actors allows designers to combine single Actors and groups of Actors into
meaningful entities which function concurrently.

Smalltalk was chosen as the implementation environment for an
Actor-based simulation system because its objects already have many of the
properties desired for Actors and Smalltalk provides sophisticated development
and debugging tools. Unfortunately, Smalltalk's model of concurrency is
limited to Smalltalk processes running under the control of the Smalltalk
interpreter whichh is itself a single operating system process. Further,
Smalltalk processes are not '"first class' objects, but rather must be treated
specially using a limited set of operations. Both Smalltalk-80 (Ref. [9])
(Ref. [5]) and Smalltalk/V (Ref. [3]) are subject to this limitation. Since
an Actor's methods and protocol implicitly define its related process'
behaviour, Actors elevate the process object to first class status.

Smalltalk, extended with Actors, provides facilities such as
interprocess communication, multi-level dynamic priorities and processing
accountability. Simulation designers are able to create processes of
differing priority which have specific processing requirements and which can
communicate with each other in a straightforward and useful fashion. Further,
the implementation of these features is transparent to the designer.

2.1 Example Actors

Each Actor typically only does one job. While, in general, the types of
Actors required and the jobs they do are application specific, there are a
number of generic Actors which may be found in many applications. In
particular, administrator, worker, server and courier Actors are common.

Their roles are implied by their names. Administrators are in charge of
resource allocation, worker coordination and system maintenance. Workers do
the fundamental computation required by the application. Servers are used to
manage a particular shared system resource such as a storage device or
communications link. Couriers are responsible for transferring data from one
Actor to another whenever it is available. Beyond these basic types however,
we feel that not enough experience has been gained to allow for
generalizations regarding the functionality, role or general utility of
generic Actors. This lack of valid generalizations means that designers will,
by-and-large, create Actors which are specific to their application.

2.2 Actor Communication

An Actor's basic communication requirement is to be able to talk
directly with other Actors. How this is to be done varies from Actor to
Actor. Administrators need to delegate tasks to their workers but cannot
afford to wait until the tasks have been completed. Servers must be able to
respond to requests immediately, perhaps postponing the actual computation
being requested until some time.

In the interest of creating a simple, easy-to-use system, a set of
message passing operations would be preferable to a shared memory model of
communication. The use of message passing allows for a higher level of
abstraction and more transparency with respect to the mechanics of the
protocol. Shared memory communication requires the programmer to wait and
signal semaphores explicitly to synchronize the communicating parties. In
large and complex applications this becomes very confusing. Two examples of
message passing protocols are the rendezvous found in Ada and the scheme used
in Harmony.

The rendezvous mechanism consists of a series of process entry points
and points in time at which communication can take place. Process A, wishing
to communicate with process B, calls for a rendezvous with B at some entry
point (much like a remote procedure call). The rendezvous takes place when B
signals that it is willing to accept a rendezvous at the specified entry
point. During a rendezvous, uni- or bidirectional communication is possible.
Process A is suspended from the time it calls for a rendezvous to the time B
determines the rendezvous is complete. The rendezvous does not allow
processes to defer ending the rendezvous (i.e., it is not directly possible
for a process to keep a list of processes which are currently connected with
it and choose to close the connection with particular ones). Rendezvous
(entry) points are defined and fixed at compile-time and so cannot be added or
removed dynamically. Further, the Ada language definition does not provide
for a description of how tasks on different processors communicate or how
tasks are allocated to processors. These factors vary from one real-time
executive to another.

Harmony uses blocking sends and receives in conjunction with
asynchronous replies to pass messages. When process A sends a message to
process B, it will (block) until B replies. If B is ready to receive a
message from others then it does a blocking receive (i.e., suspends until a
message is sent to it). When a message arrives, B extracts the data (both
sends and reolies contain data) and processes it. B can reply to A at any
time after it receives the message. When A receives the reply from B it
unblocks and processes any data returned in the reply (see Figure 2.1). This
model does not prohibit the implementation of a selective receive. Because it
is not a restrictive predefined language construct, the code for determining
if a particular process is currently willing to receive a particular message
can be arbitrarily complex. The Harmony task/processor allocation is dynamic
in that tasks can be created on any processor and can migrate from processor
to processor during their lifetime.

The Harmony message passing protocol has a number of advantages which
combine to give a wide range of possibilities within the same basic protocol.

-~ The simplicity of the primitive operation set affords those creating
new operations more flexibility (Ada has a large and complicated
primitive set).

I | I
| N

o

A | Ie——
T : } 4 } e
0 1 2 3 4 5

Time

: Both processes A and B are executing.

: B does a receive (i.e., waits for a message).

: A sends a message to B and waits for a reply (blocking send).
: B receives A's message and begins processing it.

: B replies to A who resumes processing.

: B finishes processing A's message.

WA WN—=O

FIGURE 2.1: TIME LINE OF INTERPROCESS COMMUNICATIONS IN HARMONY

~ The receiving process' capability to reply to a message before
finishing its processing allows fast communication over a many to one
channel, This is ideal for fast, high capacity servers.

- It is possible to write generic servers whose services are dynamic
(i.e., services can be added and removed at run-time). Adding
services in an Ada system would require the addition of a task entry
(rendezvous) point. This is impossible since the entry points are
fixed at compile-time.

- Techniques for programming using the Harmony message passing protocol
have developed over a number of years during which the Harmony
mechanism has been used in large multiprocessor applications. Ada's
implementation of the rendezvous mechanism is relatively new and is
only now experiencing widespread use in large multiprocessor
applications.

- Ada’'s tasking model has been found to be largely unusable for
real -time applications tecause task scheduling is not predictable.
This is shown by the existence of a multitude of different Ada
real-time executives.

- Extracting the message passing mechanism from the rest of the system
is more difficult for Ada than for Harmony because Ada's tasking is
an integral part of the language and depends on other components of
Ada. Consequently, we have elected to adopt the Harmony model for
our implementation of Actors.

2.3 Software Development Features of Actors

The use of Actors in multiprocessing applications affords the designer
and prog.ammer several luxuries. The designer has a modelling tool which is
highly intuitive and easy to understand. In many cases real world objects can
be mapped on a one-to-one basis to Actors. Someone looking at the Actor model
of a real world object can easily understand how it works, what its components
are and how they fit together. Programmers do not have to worry about the
details of process synchronization and communication as they do in other
systems.

Actors fit into parallel and serial computation systems equally well.
Applications are such that the code which runs on a system with ten processors
will run on a system with one processor. Developers can experiment with
performance by mixing parallel and serial computations. Actors are very
modular thus Actor-based applications are portable and reusable. For example,
two input/output (I/0) servers which respond to the same messages can be
interchanged at will even if they are associated with entirely different kinds
of devices.

2.4 Implementation of Actors in Smalltalk

This section discusses as unique implementation of Actors in Smalltalk
done at Defence Research Establishment Ottawa (DREO) which drew on independent
work carried out at Carleton University and the MIT Artificial Intelligence
Lab. The aim of this work was to produce a system which could be used to
support an experimental real-time system simulation environment.

Actors, as they are referred to here, are fully integrated members of
Smalltalk. Actor message sends are the same as Smalltalk sends both in
appearance and basic behaviour (i.e., they look the same and execution of the
sending method is affected in the same way). Most importantly, the code
required to implement Actors is simple, clear and concise.

An Actor is a Smalltalk object with an associated process. Normally,
whenever a message is sent to an object, the currently executing process is
responsible for the execution of the related method. With Actors, the process
associated with the Actor (object) receiving the message is responsible for
execution of the method. In this way the objects are autonomous; they are
responsible for their own computational requirements.

2.4.1 Classes required for Actors

The Actor concept is implemented using the class Actor and two support
classes, ActorMessage and Encapsulator. These classes form the essential
definition of Actors. An ActorMessage is the container for data being passed
from Actor to Actor while an Encapsulator is the Actor-to-Actor interface.

-——-——_

-

2.4.1.1 Actor
Instances of class Actor have the following instance variables.
- task

Tne task is an instance of class Process and is the part of an Actor
which is responsible for the computational power required to complete
requested operations. The priority of a process (and thus an Actor)
can be changed dynamically. Blocking (on sends and receives) is
implemented by suspending and resuming the task; no semaphores are
used.

- state

The state instance variable reflects what the Actor as a whole is
currently doing. Actors may be running, suspended, awaiting a
message or awaiting a reply. If an Actor is running, it is not
necessarily the currently running process (Smalltalk uses
non-preemptive uniprocessor multitasking), but it is available to be
run by the processor. A suspended Actor can only run again if some
other Actor resumes it. Awaiting a message or reply is like being
suspended, except that the Actor will run again upon receipt of the
desired message; it cannot be resumed.

- mailbox

When one Actor sends a message to another the message arrives in the
destination Actor's mailbox which is either a first-in, first-out
(FIFO) or priority queue. All messages received by an Actor go
through its mailbox.

- encapsulator

An Actor's encapsulator is an instance of class Encapsulator which is
described below.

2.4.1.2 ActorMessage

ActorMessages are the containers for data which is to be sent from
one Actor to another. They contain the source, destination and type of a
message as well as the data being transferred.

2.4.1.3 Encapsulator

The fundamental concept of an Encapsulator is not new, having been
suggested by (Ref. [8]). Encapsulators are used to unobtrusively (i.e.,
transparently) intercept all messages sent to a particular object. For
example, it is possible to take an arbitrary object say, a String S, and
encapsulate it so that every time the third character of S is accessed a bell
is rung.

This behaviour can be built into the class String, but modifying the
class is not the correct approach. The class String has over 2000 instances
in a typical image and this modification would affect all of them. Lvery
access to any String's third element would cause a bell to ring. In addition,
adding monitoring code to a method reduces its readability and obscures its
true functionality.

It is more useful and convenient to be able to encapsulate a
particular object without modifying any of that object's code. This makes it
possible to create, and switch between many different kinds of Encapsulator,
some functioning as monitors and others as message transformers. Switching
the Encapsulator for an object requires no code modification, rather a new
Encapsulator is created and associated with the object.

Object 1 E Object 2 Object 1 Object 2

Before become: After become:

FIGURE 2.2: OBJECT PQINTERS BEFORE AND AFTER A TWO WAY become: OPERATION

The encapsulation of a String, S, is effected by carrying out the
following steps:

1. Create a new instance, E, of the appropriate Encapsulator
subclass.

2. Associate E with S.

3. Swap all pointers to S for E and vice versa using the become:
operation (see Figure 2.2).

Notice in Figure 2.2 that, before the become:, if Object 1 accessed
its second instance variable it would get the String S while after the become:
it would get E (vice versa for Object 2). The switch is transparent since all
code which accesses instVar 2 thinking that it contains S will get E.

Step 3 is very dangerous at best and impossible at worst (some Smalltalk
implementations do not provide two way become: operations). Since become: is
used to automatically reassign to E all pointers which point to S, it is not
necessary to use become: if, at the time of the encapsulation of S, all of the
objects which point to S are known and their pointers can be manually changed
to point to E.

Once E is in place, all messages which were originally directed to S
will go to E, thus Encapsulators (E) must appear to be (i.e., behave like) the
encapsulated object (S). E can now monitor S's message traffic and periorm
interception operations on incoming messages (e.g., allow some messages to
pass through to S while holding others back). In this way E can modify the
apparent behaviour S without modifying S.

incoming
messages

Encapsulator methods String methods

FIGURE 2.3: SIMPLE MESSAGE MONITORING TECHNIQUE

In the absence of some sort of generalized message trapping scheme,
Encapsulator has to implement a method corresponding to each of the methods in
the protocol for String (see Figure 2.3). These methods perform the desired
interception operation for that message (e.g., messages can be forwarded,
logged, tagged, stopped, ...). In this way, Encapsulator is a shadow of
String. A different Encapsulator class is required for each class whose
instances are to be encapsulated. The result is a shadow class hierarchy.
There are far too many classes of objects to encapsulate for this approach to
be feasible. Further, adding a method to a class requires the addition of a
interception method to the corresponding Encapsulator class. Fortunately, the
doesNotUnderstand: mechanism offers a solution to this problem. A closer look
at the Smalltalk interpreter shows why.

When the Smalltalk interpreter encounters a message send, it does a
method lookup on the message selector. A method lookup is done by climbing
the class hierarchy from the receiver (the destination of the message) up to
Object looking for the desired method. If a method is found then it is
executed and a value returned. If a method is not found then the lookup fails
and the message doesNotUnderstand: with the original message as the argument
is sent to the original receiver.

By defining Encapsulators such that they do not inherit methods from any
other class (including Object) and implement only the doesNotUnderstand:
method, all incoming messages will be trapped by Encapsulator doesNot-
Understand: (see Figure 2.4). Removal of the inherited methods from
Encapsulator can be done by defining Encapsulator as a subclass of nil or by
removing all superclasses from the method search path. Which method is used
depends on the particular implementation of Smalltalk being used. Consider
the following example which illustrates how this mechanism is used to trap all
messages to an object.

Suppose B is some object whose contents instance variable contains a
String S. After encapsulating S with an Encapsulator E, B's contents will be
E. If B wants to know the size of its contents then it executes the code,
contents size, thus sending the size message to E. E is not able to respond
to size (because it does not implement or inherit it) so the method lookup
fails and a doesNotUnderstand: message is sent to E; the message is trapped.
The doesNotUnderstand: method for E performs the desired interception
operation on the message (it may or may not pass the message on to S) and then
returns. This mechanism relies on the fact that the Encapsulator will not
understand size (otherwise the doesNotUnderstand: message would not be sent).
Note that only the inheritance chain for Encapsulator class needs to be
broken; the chain for the Encapsulator metaclass can remain intact.

incoming
messages

Encapsulator methods . i

String methods

FIGURE 2.4: MONITORING MESSAGE TRAFFIC USING doesNotUnderstand:

The two interception methods discussed can be mixed thus excluding some
messages from being caught by the DoesNotUnderstand: mechanism. If the
message being received is implemented by the Encapsulator then
doesNotUnderstand: is by-passed.

A variety of very sophisticated monitors can be implemented in a clean
and transparent way due to the increased functionality provided by
Encapsulators. For the remainder of this report the statement that some
object is an Actor implies that the object is an Encapsulator encapsulating an
instance of Actor.

2.4,.2 How Actors Pass Messages

Encapsulators are used to make the Actor message sends look the same as
Smalltalk message sends. The following two fragments of Smalltalk code appear
the same and will accomplish the same computation but one sends a Smalltalk
message to an object and the other sends an ActorMessage to an Actor.

someObject someMessageWith: argl with: argl (1)
someActor someMessageWith: argl with: arg2 (2)

Segment 1 is a Smalltalk message send because the receiver is an object
while segment 2 is an Actor message send because the receiver is an Actor.

Encapsulators are used to transform what starts as a Smalltalk message
send into an Actor message send. The doesNotUnderstand: method for an Actor's
encapsulator changes the Smalltalk message into an Actor message and sends it
to the intended receiver using a Harmony-like message passing protocol as
described in section 2.2. Figure 2.5 below gives the pseudo-code for this
doesNotUnderstand: method.

doesNotUnderstand: aMessage
"Translate the Smalltalk message aMessage into an Actor
message and send it to the intended receiver (the receiver
of this message). Answer the result of the reply.”

build an Actor message using the information in aMessage
send the message using the Harmony mechanism

wait for a reply
extract and return the result from the reply

FIGURE 2.5: PSEUDO-CODE FOR AN ACTOR ENCAPSULATOR'S doesNotUnderstand: METHOD

- 10 -

Multiprocessing coordination of Actors is done by suspending and
resuming their associated processes rather than using semaphores. When an
Actor blocks (either for a send or reply), its process is suspended and when
the message it is waiting for arrives its process is resumed.

2.4.3 Monitoring

Encapsulators can be used to create powerful monitoring and debugging
tools. Tools for both inter-Actor (Actor message) and intra-Actor (Smalltalk
message) communication provide the user with a multi-level view of the
environment. Actor message monitoring provides information regarding resource
availability and processor usage. The ability to monitor and debug at all
levels of interaction is an important feature of a comprehensive software
development environment.

Implementations of Actor message monitors and debuggers was based on the
standard Smalltalk inspector and code debugger. Significant changes to the
code debugger were made so that it can recognize that an Actor send 1s abcut
to take place and allow the user to debug (i.e., step through) the Actor
message send. The method of executing primitives from the debugger and
accessing instance variables was also changed. The result is an Actor system
which is fully integrated with the Smalltalk environment.

3.0 ACTOR-BASED SIMULATION

Actors are well suited to modelling real world objects. It is much more
intuitive to describe the behaviour of physical objects in terms of Actors and
objects rather than in a series of equations or scripts. Objects can be
modelled at varying levels of detail since Actors interact with each other in
a clean, well defined way. The engine of a car, for example, can be described
in terms of the results of its operation (e.g., fuel intake produces
horsepower and torque) (see Figure 3.1), the fuel intake and exhaust emissions
or the interactions between the engine components (e.g., pistons turn camshaft
which opens valves etc.) (see Figure 3.2). The objects simulated can be
modelled using anything from blanket approximations to detailed descriptions
of their components. Models of differing levels of detail can be freely mixed
within the same simulation. A detailed representation of an engine's
mechanical components can co-exist and interact with a general model of the
engine's electrical system. Of course the level of detail of a particular
model can be changed without requiring changes to the other components in the
system. Users need only use the amount of detail required by their own
application.

There are no clear guidelines as to what should or should not be
modelled as an Actor (i.e., one man's Actor is another's object). Because
Actors are an extension of objects, both can exist in an Actor-based
simulation. Actors provide the simulation designer with a transparent
communication and synchronization mechanism for the components of the
simulation. Modelling is quicker and more intuitive because the

- 11 -

focus is on what the individual objects do and how they behave, not on how to
synchronize and coordinate the system as a whole. Actors are automatically
coordinated when messages are passed between them. By introducing the notion
of time Actors can also be synchronized. Because programmers do not have to
make special efforts to facilitate communication, simulations are not clogged
and confused with code not relevant to the model's behaviour.

Fuel flow Horsepower

rate

Simple equation
model of
engine based on
known effeciency Torque

Fuel data

Atmospheric
data

FIGURE 3.1: SIMPLE MODEL OF A REAL WORLD OBJECT

Fuel flow
rate

Fuel data

Atmospheric

data
exhaust data

Complex model of an engine which gives
efficiency and drive factors

FIGURE 3.2: COMPLEX MODEL OF A REAL WORLD OBJECT

3.1 Time, Events and Actors

Simulation of real-time systems requires simulation of a real-time
clock. In clock driven simulations, advancing the clock causes events to
occur. In event driven simulations, the occurrence of events causes time to
progress. Actor-based simulation combines these properties. Each Actor has a

- 12 -

clock which keeps its time. All Actors who have the same clock are
synchronized, while Actors with different clocks can have different time. A
multitasking uniprocessor system is a good example of the Actor/clock
relationship. The processor itself is the clock while the tasks running on
the it are the Actors. All the tasks have the same time (all are on the same
processor and thus have the same clock) and the processor's time is advanced
when the tasks run. If no tasks are running then the processor is stopped and
time does not advance. If the system has multiple processors then there are
multiple clocks and interprocessor communication requires clock
synchronization (communications channel arbitration).

In the interest of maximum concurrency, Actors should run freely until
forced to synchronize. Synchronization is required when Actors depend on one
another (i.e., when messages are passed). Messages must arrive in an Actor's
mailbox in the same order as they would in the real system. The important
part of this constraint is that an Actor should not receive a message until
after the time when it was sent. (Note: A message is not 'received' until the
destination Actor takes it out of its mailbox and processes it.) For example,
if an Actor at time 154 sends a message to another Actor who is at time 127,
the destination Actor should not receive that message until after it has
reached time 154. Since Actors use blocking sends, the sending Actor must
wait at least until the receiving Actor reaches time 154. The two Actors are
therefore synchronized.

To maintain this temporal consistency, the way a clock's time is
advanced must be regulated. Many systems use TimeWarp (Ref. [7]) technology
to maintain the simulation clock. Although developed independently by the
author, the system used here is quite similar to the timeLock technique (Ref.
{2]). The benefits and drawbacks of TimeWarp versus timelock have not been
fully investigated at this point and may be the subject of future
investigation.

TimeLlock dictates that when an Actor receives